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Fig. 1. Neutron diffraction powder diagram of caesium chloride, 2= 1.031 A,. 
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Fig. 2. Structure factors of nickel and caesium chloride as the 
functions of (sin2 0)/22. 

redetermined bRb of 0"85 x 10 -12 cm by Mueller, Sidhu, 
Heaton, Hitterman & Knott (1963) is also considerably 
higher than the previous one of 0.55 x 10-12 cm. It is in- 
teresting to note that the redetermined constants both for 
caesium and rubidium are, therefore, higher by a factor of 
about 1.5 than the previous ones. 
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Transformation of thermal vibration tensors. By C. SCHERINGER, Institut fiir Kristallograph& der Technischen Hoch- 
schule Aachen, Germany 

(Received 24 May 1965) 

It has been found that the formulae for the transformation 
of thermal vibration tensors given by Cruickshank (1956a, 
1961) have to be modified for oblique crystal systems, and 
thus also the programs based on them. The appropriate 
formulae will be derived. The mathematical formalism used 
is also chosen to allow a comparison between the existing 
methods of determining the principal representation of the 
vibration tensors, and to derive an explicit formula for 

their symmetry-equivalent representations. We refer to 
Cruickshank's papers as CR and CRU respectively. If  not 
stated otherwise, the notation will be as used in CR. 

Transformation in oblique crystal systems 

CR equation (1.6) for the 'smearing function' t(X) and CR 
equation (1.7) for its transform q(S) are only valid for or- 
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thogonal crystal systems. In oblique systems the compon- 
ents of X in A and the components of S in A-I  are no longer 
co- and contravariant components of the same represent- 
ation of a given vector. Therefore these components cannot 
define the same representation of a given tensor. Specific- 
ally, the symbol U-1 in CR(1.6) no longer represents the 
inverse matrix of the matrix U in CR(1.7). For, if we define 

Xc = AXs (1) 

as coordinate transformation in crystal space, 

SR = DA-1Ss (2) 

is the corresponding transformation in reciprocal space. 
m 

A-1 is the transposed inverse matrix of A; the subscripts 
C, R and S denote directions of oblique crystal axes, oblique 
reciprocal axes, and standard orthogonal axes (not their 
lengths). The subscripts C and R will be used in such a 
way that  quantities, to which either subscript can be at- 
tached, will become equal in orthogonal systems. D is a 
diagonal matrix with the elements ata~', i =  1,2,3; at and a~' 
are the length of the oblique unit cell and oblique reciprocal 
cell axes respectively. [Thus D is the same matrix as defined 
in CRU (4.6).] D in (2) has been omitted in the Appendix of 
CR. In order to find the appropriate tensor transformation 
and the related equations, the set of basic equations CR(1 "6) 
and (1.7) has to be modified for oblique systems. 

The electron density distribution is a scalar quantity and 
is thus invariant w.r.t, coordinate transformations. Hence, 
with the coordinate transformation (1), the multivariate 
Gaussian distribution function t(Xs), as given by CR(1-6), 
is transformed so that the tensor Us is transformed ac- 
cording to 

Uc = AUsA (3) 

(see e .g .  Linnik, 1961). The type of distribution function 
remains unchanged, although det Uc # det Us. The trans- 
form q(SD of t ( X c )  also represents a physical property; 
hence q(S) has to remain constant when S is transformed. 
With (2) and (3) we obtain 

m 

SRURSR = S s U s S s  

= S R D - 1 A A - 1 U c A - 1 A D - I S R  

= S R D - 1 U c D - 1 S  R . 

(S represents a 1 x 3-row matrix.) Hence 

UR = D-  1UcD- 1 . (4) 

(4) shows that the tensor components represented by Uc 
and UR are in general not equal. D is a unit matrix and 
U ~ = U c  only for orthogonal  systems. With (4) CR(2.2) 
becomes 

(b iDR = 2n2ai-  l a ~  ~( Uvc) c , (5) 

counting 9 elements for bR. Thus a* in CR(2.2) has to be 
replaced by aE 1. 

(3) and (5) can also be derived in a different manner. We 
start from Levy's (1956) equation (4), which we list as 

3 

(btDn=2zr2 27 O r i O r k  . (6) 
r = l  

The elements art are defined by Levy's equation (3). Then 
Or* a, is the ith component  of the rth r.m.s, principal vi- 
bration amplitude in A, where i=  1,2,3 denote the crystal 
axes. Hence 

3 

( Ut~)c = atalc X ertar~ . (7) 
r = l  

We combine (6) and (7), and obtain (5). Now (3) is derived 
as follows: Let 

xc = Fxs (8) 

correspond to (1) with the components of x in lattice units. 
Then A and F are related by 

A = NcFN 71,  (9) 

where Nc and Ns are diagonal matrices with the elements 
a~, i=  1,2,3. The transformation of the Miller indices is 
contragredient to (8). Hence b is transformed according to 

bR = FbsF.  (10) 

Now, if (5) is applied to bs, (10) results in 

b• = 2n2FN 71UsN71F.  (11) 

We equate (5) and (11), and obtain 

N~- IUcNg- 1 = FN 71UsN71F (12) 

which, with the use of (9), gives the desired tensor trans- 
formation (3). 

We shall now take a different point of view: We accept 
CR(2.2) as valid - then by definition the components of U 
are given by UR - and look for the respective tensor trans- 
formation. We combine (3) and (4), solve for Us, use B =  
A-l ,  and obtain 

Us = (BD)UR(BD). (13) 

(13) may also be derived from CR(2.2) in a manner  similar 
to deriving (3) from (5). CR(2.2) and (13) are a set of equa- 
tions equivalent to the set (5) and (3); either one can be 
used. CR(2.2) and (3), which correspond to CR(1.7) and 
to CR(1.6) and which are the basis for computation in CR, 
form an incorrect set. 

Now CRU's  revised formula (4.5) for the tensor trans- 
formation may be discussed, which we list for reference as 

Us = (DB)Uc(DB). (14) 

A comparison with (13) shows that the representation Uc 
has to be replaced by the representation Un, but with the 
use of CR(2.2) - or CRU(2.11) - the representation UR is 
calculated by definition. Still the position of D makes 
equation (14) incorrect. 

For the calculation in oblique crystal systems it is impor- 
tant to know the variance properties of the tensor compo- 
nents represented by UR and Uc w.r.t, the relevant systems 
of base vectors. By definition of UR and from (7) we see 
immediately that UR is doubly covariant to the system of 
the unit base vectors e~ being parallel to the reciprocal axes, 
and that Uc is doubly contravariant to the system of the 
unit base vectors e~ being parallel to the crystal axes. From 
(4) we see that UR is doubly contravariant to the base 
vectors ata~et. (Note that by CRU(4.6) ata7 does only depend 
on the angles between the base vectors.) The variance pro- 
perties may also be understood from the following relation 
between the metric tensors h ( h ~ k = e t .  eD  and h* (hTk = 

* * 

e t . e k) of the unit base vectors 

h* = D - l h - I D - i  

which parallels (4), and may be derived from the corres- 
ponding relation g . = g - 1  for the metric tensors of the 
crystal. Hence for the calculation of the mean square 
vibration amplitude in the direction of a given unit vector 1, 
as indicated by CR(1.5), UR and the contravariant com- 
ponents of I w.r.t, the unit base vectors e* have to be used. 
If, on the other hand, Uc is evaluated, the covariant com- 
ponents of I w.r.t, the unit base vectors et must be used. 
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Consider a monoclinic crystal with fl = 60 ° : I f  CR(2.2) is 
used and subsequently (3), the elements 11, 33, 13 of Uc as 
needed in (3) will be too small by a factor of 0.78, the 
elements 12 and 23 by a factor of 0.89, while the element 22 
is correctly evaluated. If  DB in (13) is used instead of BD, 
only the elements 12, 21, 23 and 32 of BD become false 
[except they are all zero as in CRU(4.1)]. The errors in- 
troduced are difficult to estimate but are probably of the 
same order of magnitude. 

In  Cruickshank's  method (1956b) the atomic tensors 
U obs are used as data for the least-squares determination of 
the rigid-body tensors T and co. If  the U °bs have been ob- 
tained with an incorrect transformation in oblique systems, 
the actual values of T and to will also be incorrect. Neverthe- 
less the agreement U °b~ versus U talc may still be good. This 
is suggested by the fact that  the transformation Uc --,'-Us 
(or UR ~ Us) is influenced by the errors in the same manner 
for each atom. However, it cannot be shown rigorously 
that  the differences U °b~- U °~° remain completely unaf- 
fected by the errors. 

I t  is possible that  the errors discussed explain the in- 
consistencies reported by Lonsdale & Milledge (1961). 
These authors point out that the atomic principal vibration 
tensors - obtained from a numerically correct eigenvalue 
calculation - deviate in a systematic fashion from the atomic 
vibration tensors - obtained from the rigid-body tensors 
referred to the 'natural '  molecular axes. Lonsdale & Mill- 
edge also state that the deviations are less pronounced in 
orthogonal crystal systems. They give other - physical - 
explanations for these effects, which, of course, may still 
be valid. 

Principal representations 

Two ways of determining the principal presentations of the 
vibration tensors have been established. In the first approach 
(Rollett & Davies, 1955; CRU)  the tensors are first trans- 
formed to orthogonal axes, UR --~ Us, and then the eigen- 
values A and the eigenvectors, as columns of T, are deter- 
mined so that 

U s =  TAT-1 ,  (15) 

T-~ = T .  In the second approach (Waser, 1955; Busing & 
Levy, 1958) A is determined directly from b and the metric 
tensor g of the crystal system, so that 2n2A is the principal 
representation of gb. The two approaches may now be 
related and their computational aspects considered. 

We show that in both approaches the same lenglhs of the 
principal axes are obtained: With (8) g is transformed ac- 
cording to 

gc = F- IgsF -1 , 

and with (10) we obtaint  

t For the tensors b and g the subscripts C and R are only 
used to indicate the fact that the cell is oblique. Although the 
metric tensor of the reciprocal cell g* is covariant to its base 
vectors, R cannot be used to indicate this tensor. For g*:/:g 
in an orthogonal system. Correspondingly, b-1 being covariant 
to the base vectors of the crystal cell cannot be denoted by 
be. On the other hand, h* = h in an orthogonal system, and the 
subscript R could have been used instead of the asterisk. The 
same holds, of course, for the unit base vectors e~*. The reverse, 
however, does not hold for the tensor components represented 
by UR and Uc w.r.t, their unit base vectors. For we would 
obtain Uc:~U (without an asterisk) because Uc - I = U ,  with 
U being covariant to the unit base vectors e~. (UR = U* would 
be all right.) 

gcbR = F-1 gsbsF .  

By definition gs = N s N s ,  and 2n2Us = N s b s N s .  Hence gcbR 
and 2n2Us have the same eigenvalues. It cannot be shown 
generally that in both approaches the same orientation of 
the principal axes is obtained. For  Waser's equation er= 
2:(q~/qr)b~ requires that some actual vector in reciprocal 
/ 
space is used. Thus we can only compare the computational  
effort. A, as defined by (1), must always be set up in terms 
of three orienting angles. Then T can be interpreted in terms 
of three Eulerian angles. If Hr~ are the elements of Waser's 
transformation, T is obtained by 

T = A-1NcH-1 .  

Also note that Us is symmetric and gcbR is not. [Symmetry 
may be gained, however, by once determining 7, so that  
7"t = gc, and by using 7bRv instead of gcbR (Johnson, 1965)]. 
Thus we conclude that  the use of (1), (3) - or (13) - and 
(15) is the more straightforward computational procedure. 

Symmetry transformations 

We shall now apply the formal results already obtained to 
symmetry transformations of the vibration tensors. Vibrat- 
ing atoms related by a symmetry operation have an equi- 
valent electron-density distribution .Thus this distribution 
and its transform are invariant with respect to symmetry 
operations. Hence b is also a tensor with respect to sym- 
metry. With the coordinate transformation 

x ' =  Gx (16) 

(the components of x are in lattice units) the tensor trans- 
formation 

m 

b ' =  GbG (17) 

holds. (17) follows from (16) as (3) from (1), or as (10) from 
(8). This is the shortest derivation of the symmetry-equi- 
valent representations of b when compared with the deriv- 
ations given by Trueblood (1956) and Levy (1956):I:. (17) is 
an explicit formula whereas Trueblood and Levy only out- 
line a path of solution. (17) is also suited to generate, with 
a logical program in a computer, the symmetry-equivalent 
representations of b for all crystal classes (space groups). If  
G represents an inversion centre, then b ' =  b as it should be. 

We now show that (17) also holds for the transformation 
of the tensors U referred to crystal axes. With (17) we have 

m 

Nb'N/2z~2 = U'  = NGN-1UN-1GN.  (18) 

In the monoclinic and orthorhombic crystal classes G is 
diagonal. In all other classes the permuted coordinates 
refer to cell edges of the same length. Hence for all possible 
combinations of rotation axes NGN-1 = G. Thus from (18) 

! 

U'=GUG (19) 

follows, which parallels (17). By the same reasoning, and 
with the use of (N*)-I instead of N, or with (4) and (19), 
it follows that (19) also holds for the tensors U leferred to 

:I: Equation (17) has also been obtained by Wells (1965), 
although his derivation is incorrect for the general case. For, 
in the trigonal and hexagonal crystal system, b and b" do not 
have the same eigenvalues, as in these systems G is a non- 
orthogonal matrix (with the elements +1, 0, -1 ) .  Thus 
Wells's equations (2-10) and (2.11a) are incorrect, but the er- 
rors compensate each other to yield finally the correct result 
(2.1 lc). 
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reciprocal axes. Hence for special positions the restrictions 
which are valid for the components of b are equally valid 
for the components of U referred to either crystal or reci- 
procal a x e s . .  

This work was supported by the Deutsche Forschungs- 
gemeinschaft. 
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Cruickshank (1956) - here referred to as CK - was the first 
to propose a procedure for the refinement of rigid-body 
vibration tensors. These are obtained in a least-squares 
procedure, in which the vibration tensors of the individual 
atoms are used as data. These tensors in turn have been 
obtained from a normal refinement with diffraction data. 
Recently Pawley (1964) - here referred to as P A -  described 
a least-squares method for refining rigid-body tensors by 
making direct use of diffraction data. The question arises 
whether or not the two approaches yield the same results. 
It turns out that this is true only under certain conditions, 
which will be determined in this paper. This provides a theo- 
retical foundation for the setting of weights in CK's deter- 
mination of rigid-body tensors. 

For  n atoms in the molecule assumed to be rigid, CK 
equation (2.3) may be written in matrix notation as 

U = R T ,  (1) 

where U represents the 6n components of the n atomic ten- 
sors, T the 12 components of CK's molecular tensors T 
and ¢o. R is a 6n x 12-matrix with the coefficients of CK (2.3). 
If  the increments ev and e~, of U and T are substituted in (1), 
then CK's normal equations (2-5) may be written as 

RPReT = RPe v ° b s  . ( 2 )  

m 

P is a 6n x 6n weighting matrix, R the transpose of R. Let 

Me v°bs = N (3) 

be the normal equations for determining ev obs, then PA's 
approach can be shown to have the normal equations 

RMR~r = R N .  (4) 

If  we now introduce evobs= M - i N  in (2), comparison of(2) 
and (4) shows that these equations are equivalent only if 
P =  M. Thus CK's and PA's approaches are equivalent, if 
M of the last cycle of structure-factor refinement is chosen 
to be the weighting matrix. M is proportional to the inverse 
of  the covariance matrix of the thermal parameters of the 
individual atoms, which in turn is obtained from the cov- 
ariance matrix of the intensity data. Hence the use of M as 
weighting matrix is in accordance with the Gaussian law 
of setting weights. 

The use of M as weighting matrix greatly increases the 
amount  of computation necessary in CK's determination of 
rigid-body tensors. Furthermore, M is usually not  avail- 
able, because structure-factor refinement is usually carried 
out with respect to atomic vibration tensors, which are re- 
ferred to the reciprocal axes of the crystal system rather 
than to the molecular axes. Thus we shall now derive a 
simple but sufficient approximation Q which may be used 
instead of M in all practical work. 

At first we assume that  the Cartesian coordinate system 
of the molecule coincides in direction with the (orthogonal) 
crystal system. The results obtained with this assumption 
will be generalized below. The elements of M are 

OIFI OIFI 
M~t= ~rw O U~" 0 U~ ' (5) 

w being the weights of the experimental data, F t h e  structure 
factor, r denotes the atom, s, t =  1 . . . 6  the independent 
components of U r. We now use unitary form factors f for 
all atoms, given b y f i = f Z r ,  where Zr is the number of elec- 
trons in the rth atom. Let Gr be the geometrical structure- 
factor term, and V8 = S~Sk with subscript s = s(i, k) for the 
elements of U r in the sequence 11, 22, 33, 12, 13, 23, and 
let S~ be the i th  component in reciprocal space (in A-a) 
of the reflexion considered, then 

M~tN4n4Z2r~Wf 2 exp (-2"ffp~h)G2VsVe . (6) 

h is a 3 x 1-column matrix of the Miller indices, Pr the an- 
isotropic parameter matrix. If one of the indices s or t is 
> 3, a factor of 2 enters on the right-hand side of (6) owing 
to the symmetry of U r. For  s > 3, t > 3 the factor is 4. These 
factors will be introduced into the final result. We now 
assume that the data have been obtained with equal quality 
in each spherical shell of the reciprocal space and that their 
number is infinite in a finite region. Furthermore, the tem- 
perature factor is assumed to be isotropic. Also some mean 
value C_~ h of  C~, assumed to be the same for each atom, is 
constant for integration over the shell. (These approxim- 
ations have also been used by Scheringer (1965) to derive an 
approximate matrix for positional parameters.) With these 
approximations the factors 4zr 4, w, f2, exp (-2h'prh) and 


